Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
J Equine Vet Sci ; 131: 104956, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879453

RESUMO

Equine influenza virus (EIV) infection is one of the most important respiratory diseases in the equine industry around the world. Rapid diagnosis, facilitated by point-of-care testing, is essential to implement movement restrictions and control disease outbreaks. This study evaluated a microfluidic immunofluorescence assay kit, which detects influenza virus and SARS-CoV-2 antigens in human specimens with a 12 min turnaround time, for its potential use in detecting EIV. The microfluidic immunofluorescence assay kit succeeded in detecting 11 EIV strains. Using the real-time reverse transcription polymerase chain reaction as a reference assay, the microfluidic immunofluorescence assay kit showed a sensitivity of 60.7% when evaluating nasopharyngeal swab samples of three horses experimentally infected with EIV. Comparing with the other two rapid antigen detection kits based on immunochromatography and silver amplification immunochromatography, the microfluidic immunofluorescence assay kit exhibited higher sensitivity than the former assay (53.6%) and the same sensitivity as the latter (60.7%). The microfluidic immunofluorescence assay kit did not detect nine non-EIV viruses including one equine coronavirus strain and seven bacteria, suggesting a high specificity for EIV antigens. Similar to other rapid antigen detection kits, the microfluidic immunofluorescence assay kit could be an effective diagnostic tool to detect EIV in the field.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae , Humanos , Animais , Cavalos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Microfluídica , Doenças dos Cavalos/diagnóstico , Imunofluorescência/veterinária
2.
J Virol Methods ; 321: 114791, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562733

RESUMO

Infectious salmon anaemia virus (ISAV) can cause severe systemic infection in Atlantic salmon (Salmo salar L.), and a timely diagnosis is critical. Conventional real-time reverse transcription PCR (RT-qPCR) assays target unspliced RNA from either ISAV segment 7 or 8 and provide data on viral load. Here, we evaluate a TaqMan one-step RT-qPCR assay that detects explicitly a spliced messenger RNA (mRNA) of ISAV segment 7, thus providing evidence of active viral transcription. Assay performance was comparable with existing unspliced segment 7 and segment 8 assays. PCR efficiency as evaluated from dilutions of a synthetic DNA fragment was 98 % (R2 = 1.00). The assay also performed well on clinical heart samples with PCR efficiency of 108 % (R2 = 1.00). Finally, evaluation on kidney samples from experimental infection revealed higher levels of active transcription for high-virulent compared to low-virulent ISAV. At early, peak, and late infection, mean ratios of spliced to unspliced segment 7 RNA were 3.0 % (± 0.7), 1.7 % (± 0.3), and 1.5 % (± 0.1) for the low virulent and 9.4 % (± 2.2), 4.7 % (± 0.8), and 6.2 % (± 0.1) for the high virulent isolate, respectively. By detection and quantification of active ISAV transcription, this assay may provide a more detailed understanding of ISAV infection dynamics.


Assuntos
Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Animais , Isavirus/genética , RNA Mensageiro/genética , Infecções por Orthomyxoviridae/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Peixes/diagnóstico , Salmo salar/genética
3.
mSystems ; 7(6): e0045922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346236

RESUMO

The tracking of pathogen burden and host responses with minimally invasive methods during respiratory infections is central for monitoring disease development and guiding treatment decisions. Utilizing a standardized murine model of respiratory influenza A virus (IAV) infection, we developed and tested different supervised machine learning models to predict viral burden and immune response markers, i.e., cytokines and leukocytes in the lung, from hematological data. We performed independently in vivo infection experiments to acquire extensive data for training and testing of the models. We show here that lung viral load, neutrophil counts, cytokines (such as gamma interferon [IFN-γ] and interleukin 6 [IL-6]), and other lung infection markers can be predicted from hematological data. Furthermore, feature analysis of the models showed that blood granulocytes and platelets play a crucial role in prediction and are highly involved in the immune response against IAV. The proposed in silico tools pave the path toward improved tracking and monitoring of influenza virus infections and possibly other respiratory infections based on minimally invasively obtained hematological parameters. IMPORTANCE During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host's lungs are invasive and expensive, and some of them are not feasible to perform. Using machine learning algorithms, we show for the first time that minimally invasively acquired hematological parameters can be used to infer lung viral burden, leukocytes, and cytokines following influenza virus infection in mice. The potential of the framework proposed here consists of a new qualitative vision of the disease processes in the lung compartment as a noninvasive tool.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Respiratórias , Camundongos , Animais , Humanos , Influenza Humana/diagnóstico , Pulmão , Infecções por Orthomyxoviridae/diagnóstico , Citocinas , Interferon gama , Aprendizado de Máquina
4.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632730

RESUMO

Swine viral diseases challenge the sector's sustainability by affecting productivity and the health and welfare of the animals. The lack of antiviral drugs and/or effective vaccines renders early and reliable diagnosis the basis of viral disease management, underlining the importance of point-of-care (POC) diagnostics. A novel POC diagnostic device utilizing photonic integrated circuits (PICs), microfluidics, and information and communication technologies for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A (SIV) was validated using spiked and clinical oral fluid samples. Metrics including sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device. For PRRSV, the device achieved a sensitivity of 83.5%, specificity of 77.8%, and DOR values of 17.66, whereas the values for SIV were 81.8%, 82.2%, and 20.81, respectively. The POC device and PICs can be used for the detection of PRRSV and SIV in the field, paving the way for the introduction of novel technologies in the field of animal POC diagnostics to further optimize livestock biosecurity.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Dispositivos Lab-On-A-Chip , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Sistemas Automatizados de Assistência Junto ao Leito , Suínos
5.
Microbiol Spectr ; 10(1): e0203121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080443

RESUMO

A biomarker for viral infection could improve the differentiation between viral and bacterial infections and reduce antibiotic overuse. We examined blood myxovirus resistance protein A (MxA) as a biomarker for viral infections in children with an acute infection. We recruited 251 children presenting with a clinical suspicion of serious bacterial infection, determined by need for a blood bacterial culture collection, and 14 children with suspected viral infection at two pediatric emergency departments. All children were aged between 4 weeks and 16 years. We classified cases according to the viral, bacterial, or other etiology of the final diagnosis. The ability of MxA to differentiate between viral and bacterial infections was assessed. The median blood MxA levels were 467 (interquartile range, 235 to 812) µg/L in 39 children with a viral infection, 469 (178 to 827) µg/L in 103 children with viral-bacterial coinfection, 119 (68 to 227) µg/L in 75 children with bacterial infection, and 150 (101 to 212) µg/L in 26 children with bacterial infection and coincidental virus finding (P < 0.001). In a receiver operating characteristics analysis, MxA cutoff level of 256 µg/L differentiated between children with viral and bacterial infections with an area under the curve of 0.81 (95% confidence interval [CI] = 0.73 to 0.90), a sensitivity of 74.4%, and a specificity of 80.0%. In conclusion, MxA protein showed moderate accuracy as a biomarker for symptomatic viral infections in children hospitalized with an acute infection. High prevalence of viral-bacterial coinfections supports the use of MxA in combination with biomarkers of bacterial infection. IMPORTANCE Due to the diagnostic uncertainty concerning the differentiation between viral and bacterial infections, children with viral infections are often treated with antibiotics, predisposing them to adverse effects and contributing to the emerging antibiotic resistance. Since currently available biomarkers only estimate the risk of bacterial infection, a biomarker for viral infection is needed in attempts of reducing antibiotic overuse. Blood MxA protein, which has broad antiviral activity and is rapidly induced in acute, symptomatic viral infections, is a potential biomarker for viral infection. In this diagnostic study of 265 children hospitalized because of an acute infection, blood MxA cutoff level of 256 µg/L discriminated between viral and bacterial infections with a sensitivity of 74% and specificity of 80%. MxA could improve the differential diagnostics of febrile children at the emergency department but, because of frequently detected viral-bacterial coinfections, a combination with biomarkers of bacterial infection may be needed.


Assuntos
Biomarcadores/sangue , Proteínas de Resistência a Myxovirus , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/metabolismo , Adolescente , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Febre/diagnóstico , Humanos , Lactente , Masculino , Proteínas de Resistência a Myxovirus/sangue , Orthomyxoviridae/genética , Proteína Estafilocócica A , Viroses/tratamento farmacológico , Viroses/virologia
6.
J Infect Dis ; 225(1): 65-74, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34036370

RESUMO

BACKGROUND: A(H1N1)pdm09 influenza viruses replicate efficiently in respiratory epithelia and are transmitted via respiratory droplets and aerosols expelled by infected hosts. The relative onward transmission potential of influenza viruses replicating in the upper and lower respiratory epithelial cells has not been fully defined. METHODS: Wild-type and barcoded A(H1N1)pdm09 viruses that differed by 2 synonymous mutations per gene segment were inoculated into ferrets via intranasal and intratracheal routes. Naive recipients were exposed to the exhaled breath of inoculated donors for 8 hours on day 2 postinoculation. Onward transmission potential of wild-type and barcoded genotypes were monitored by next generation sequencing. RESULTS: Transmissible airborne particles were respired from the upper but not the lower respiratory epithelial cells of donor ferrets. There was limited mixing of viral populations replicating in the upper and lower respiratory tissues. CONCLUSIONS: The ferret upper respiratory epithelium was mapped as the anatomic site that generated influenza virus-laden particles mediating onward transmission by air. Our results suggest that vaccines and antivirals should aim to reduce viral loads in the upper respiratory tract for prevention of influenza transmission.


Assuntos
Furões/virologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/transmissão , Animais , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/epidemiologia , Aerossóis e Gotículas Respiratórios , Sistema Respiratório , Tropismo Viral , Replicação Viral
7.
Transbound Emerg Dis ; 69(4): e52-e63, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34331828

RESUMO

Equine influenza virus (EIV) is a major infectious pathogen causing significant respiratory signs in equids worldwide. Voluntary surveillances in the United States recently reported EIV detection in horses with respiratory signs even with adequate vaccine protocols and biosecurity programs and posed a concern about suboptimal effectiveness of EIV vaccine in the United States. This study aims to determine the genetic characteristics of 58 field EIV H3N8 strains in the United States from 2012 to 2017 using the phylogenetic analysis based on the haemagglutinin (HA) gene. Amino acid substitution and acquisition of N-glycosylation of the HA gene were also evaluated. Phylogenetic analysis identified that almost all US field strains belonged to the Florida clade 1 (FC1) except one Florida clade 2 strain from a horse imported in 2014. US EIV strains in 2017 shared 11 fixed amino acid substitutions in the HA gene, compared to the vaccine strain (A/equine/Ohio/2003), and two additional amino acid substitutions were detected in 2019. The introduction of foreign EIV strains into the United States was not detected, but antigenic drift without acquisition of N-glycosylation in the HA gene was observed in US field strains until 2017. Considering the global dominance of FC1 strains, subsequent antigenic drift of US EIV strains should be monitored for better effectiveness of the EIV vaccine in the United States and global equine industries.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Deriva e Deslocamento Antigênicos , Hemaglutininas/genética , Doenças dos Cavalos/diagnóstico , Cavalos , Humanos , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia
8.
Artigo em Alemão | MEDLINE | ID: mdl-34861735

RESUMO

In a gilt producing farm in Lower Austria, respiratory diseases occurred over the previous years in self-reared gilts after being introduced into the sow herd. In addition, fertility disorders in terms of late abortions and re-breeders were observed in the fall of 2019. Nasal swabs of 3 gilts with respiratory signs and fever were tested positive for influenza A virus (IAV) subtype H1avN1 by PCR. However, examination of serum samples from these animals at 2 different time points did not detect antibodies using the standard hemagglutination inhibition (HI) test of the laboratory. Examination of additional age groups likewise failed to detect H1avN1 antibody titers. In consequence to the extension of the diagnostic panel of the HI test by 7 additional H1avN1 test antigens, a clear seroconversion of the PCR positive sows against 2 different H1avN1 isolates could be measured. In addition, high antibody titers against these 2 H1avN1 strains were also detectable in the majority of the remaining age groups tested. Following the administration of the trivalent influenza vaccine, which has been approved throughout Europe, a significant improvement of the clinical presentation in the herd was achieved. The present case report illustrates that direct and indirect pathogen detection should be used in combination for targeted influenza diagnostics. In addition, it was shown that the continuous adaptation of test antigens to the isolates circulating in the field would be extremely crucial for the significance of the HI test.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Anticorpos Antivirais , Feminino , Humanos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Gravidez , Sus scrofa , Suínos , Doenças dos Suínos/diagnóstico
9.
Front Immunol ; 12: 777739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804069

RESUMO

Immuno-positron emission tomography (immuno-PET) is a noninvasive imaging method that enables tracking of immune cells in living animals. We used a nanobody that recognizes mouse CD8α and labeled it with 89Zr to image mouse CD8+ T cells in the course of an infection with influenza A virus (IAV). The CD8+ signal showed a strong increase in the mediastinal lymph node (MLN) and thymus as early as 4 days post-infection (dpi), and as early as 6 dpi in the lungs. Over the course of the infection, CD8+ T cells were at first distributed diffusely throughout the lungs and then accumulated more selectively in specific regions of the lungs. These distributions correlated with morbidity as mice reached the peak of weight loss over this interval. CD8+ T cells obtained from control or IAV-infected mice showed a difference in their distribution and migration when comparing their fate upon labeling ex vivo with 89Zr-labeled anti-CD8α nanobody and transfer into infected versus control animals. CD8+ T cells from infected mice, upon transfer, appear to be trained to persist in the lungs, even of uninfected mice. Immuno-PET imaging thus allows noninvasive, dynamic monitoring of the immune response to infectious agents in living animals.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/imunologia , Imagem Molecular/métodos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/imunologia , Tomografia por Emissão de Pósitrons/métodos , Sequência de Aminoácidos , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Rastreamento de Células , Modelos Animais de Doenças , Imunofenotipagem , Camundongos , Modelos Moleculares , Sondas Moleculares/química , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Peptídeos/química
10.
Anal Chim Acta ; 1181: 338933, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556218

RESUMO

Influenza viruses are highly variable pathogens that infect a wide range of mammalian and avian species. According to the internal conserved proteins (nucleoprotein: NP, and matrix proteins: M), these viruses are classified into type A, B, C, and D. Influenza A virus in swine is of significant importance to the industry since it is responsible for endemic infections that lead to high economic loses derived from poor weight gain, reproductive disorders, and the role it plays in Porcine Respiratory Disease Complex (PRDC). To date, swine influenza virus (SIV) diagnosis continues to be based in complex and expensive technologies such as RT-qPCR. In this study, we aimed to improve actual tools by the implementation of aptamers as capture molecules. First, three different aptamers have been selected using as target the recombinant NP of Influenza A virus expressed in insect cells. Then, these molecules have been used for the development of an Enzyme-Linked AptaSorbent Assay (ELASA) in combination with specific monoclonal antibodies for Influenza A detection. A total of 171 field samples (nasal swabs) have been evaluated with the newly developed assay obtaining a 79.7% and 98.1% sensitivity and specificity respectively, using real time RT-PCR as standard assay. These results suggest that the assay is a promising method that could be used for Influenza A detection in analysis laboratories facilitating surveillance labours.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Suínos , Doenças dos Suínos/diagnóstico
11.
Sci Rep ; 11(1): 15675, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344944

RESUMO

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 (Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe influenza.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Infecções por Orthomyxoviridae/complicações , Receptores Depuradores Classe E/metabolismo , Trombose/etiologia , Trombose/metabolismo , Animais , Coagulação Sanguínea , Citocinas/sangue , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Tempo de Tromboplastina Parcial , Receptores Depuradores Classe E/genética , Índice de Gravidade de Doença , Trombina/biossíntese , Trombose/diagnóstico , Carga Viral
12.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445529

RESUMO

The circulation of the H9N2 virus results in significant economic losses in the poultry industry, and its zoonotic transmission highlights the need for a highly sensitive and rapid diagnostic and detection system for this virus. In this study, the performance of lateral flow test strips for a fluorescent immunochromatographic test (FICT) was optimized for the diagnosis of H9N2 virus-infected animal samples. The novel monoclonal antibodies (McAbs) against influenza A H9 viruses were developed, and two categories of McAbs with linear and conformational epitopes were compared for the performance of rapid diagnostic performance in the presence of feces sample at different time points (2, 4, and 6 days) post-infection (dpi). The limit of detection (LOD) of FICT and Kd values were comparable between linear and conformational epitope McAbs. However, superior performance of linear epitope McAbs pairs were confirmed by two animal studies, showing the better diagnostic performance showing 100% relative sensitivity in fecal samples at 6 dpi although it showed less than 80% sensitivity in early infection. Our results imply that the comparable performance of the linear epitope McAbs can potentially improve the diagnostic performance of FICT for H9N2 detection in feces samples. This highly sensitive rapid diagnostic method can be utilized in field studies of broiler poultry and wild birds.


Assuntos
Fezes/virologia , Fluorescência , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Infecções por Orthomyxoviridae/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Animais , Galinhas , Testes Diagnósticos de Rotina , Feminino , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Limite de Detecção , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/virologia
13.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452300

RESUMO

In the past, cats were considered resistant to influenza. Today, we know that they are susceptible to some influenza A viruses (IAVs) originating in other species. Usually, the outcome is only subclinical infection or a mild fever. However, outbreaks of feline disease caused by canine H3N2 IAV with fever, tachypnoea, sneezing, coughing, dyspnoea and lethargy are occasionally noted in shelters. In one such outbreak, the morbidity rate was 100% and the mortality rate was 40%. Recently, avian H7N2 IAV infection occurred in cats in some shelters in the USA, inducing mostly mild respiratory disease. Furthermore, cats are susceptible to experimental infection with the human H3N2 IAV that caused the pandemic in 1968. Several studies indicated that cats worldwide could be infected by H1N1 IAV during the subsequent human pandemic in 2009. In one shelter, severe cases with fatalities were noted. Finally, the highly pathogenic avian H5N1 IAV can induce a severe, fatal disease in cats, and can spread via cat-to-cat contact. In this review, the Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, summarises current data regarding the aetiology, epidemiology, pathogenesis, clinical picture, diagnostics, and control of feline IAV infections, as well as the zoonotic risks.


Assuntos
Doenças do Gato , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Doenças do Gato/transmissão , Doenças do Gato/virologia , Gatos , Humanos , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia
14.
PLoS Pathog ; 17(7): e1009759, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320031

RESUMO

The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/genética , MicroRNAs/genética , SARS-CoV-2 , Adulto , Idoso , Animais , COVID-19/sangue , Estudos de Casos e Controles , Diagnóstico Diferencial , Modelos Animais de Doenças , Feminino , Furões , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Vírus da Influenza A Subtipo H1N1 , Estudos Longitudinais , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/genética , Pandemias , Aprendizado de Máquina Supervisionado
15.
Arch Virol ; 166(8): 2217-2224, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091783

RESUMO

Swine influenza is an economically important respiratory disease in swine, but it also constantly poses a threat to human health. Therefore, developing rapid, sensitive, and efficient detection methods for swine influenza virus (SIV) is important. By aligning the haemagglutinin (HA) gene sequences of SIVs circulating in China over a 10-year period, an H1 primer-probe set targeting both Eurasian avian-like H1N1 (EA H1N1) and pandemic 2009 H1N1 ((H1N1)pdm09) lineages plus a H3 primer-probe set targeting the prevalent human-like H3N2 (HL H3N2) subtype were designed. Subsequently, a TaqMan-MGB-based duplex one-step real-time RT-PCR (RT-qPCR) assay was established and evaluated. The duplex RT-qPCR has a detection limit of 5 copies/µL of HA plasmid for EA H1N1, (H1N1)pdm09, and HL H3N2 subtype SIVs, and its overall detection sensitivity of 100% and specificity of 91.67% matches that of traditional virus isolation through chicken embryo inoculation using experimentally infected mouse lung samples. The method showed high repeatability both within run and between runs, and there was no cross-reactivity against several other porcine viruses that are commonly circulating in China. Furthermore, the duplex RT-qPCR method revealed a higher prevalence of subtype H1 than subtype H3 in 166 nasal swabs from pigs collected from one slaughterhouse between October and December 2019. This assay could be very helpful in the rapid differential detection and routine surveillance of EA H1N1, (H1N1)pdm09, and HL H3N2 SIVs in China.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/diagnóstico , Animais , China , Modelos Animais de Doenças , Diagnóstico Precoce , Feminino , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Nariz/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Suínos
16.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980684

RESUMO

Antibody detection is crucial for monitoring host immune responses to specific pathogen antigens (Ags) and evaluating vaccine efficacies. The luciferase immunoprecipitation system (LIPS) was developed for sensitive detection of Ag-specific antibodies in sera from various species. In this study, we describe NanoLIPS, an improved LIPS assay based on NanoLuciferase (NLuc), and employ the assay for monitoring antibody responses following influenza virus infection or vaccination. We generated recombinant influenza virus hemagglutinin (HA) proteins tagged with N-terminal (N-NLuc-HA) or C-terminal (C-NLuc-HA) NLuc reporters. NLuc-HA yielded an at least 20-fold higher signal-to-noise ratio than did a LIPS assay employing a recombinant HA-Gaussia princeps luciferase (GLuc) fusion protein. NanoLIPS-based detection of anti-HA antibodies yielded highly reproducible results with a broad dynamic range. The levels of antibodies against C-NLuc-HA generated by mice vaccinated with recombinant vaccinia virus DIs strain expressing an influenza virus HA protein (rDIs-HA) was significantly correlated with the protective effect elicited by the rDIs-HA vaccine. C-NLuc-HA underwent glycosylation with native conformations and assembly to form a trimeric structure and was detected by monoclonal antibodies that detect conformational epitopes present on the globular head or stalk domain of HA. Therefore, NanoLIPS is applicable for evaluating vaccine efficacy. We also showed that C-NLuc-HA is applicable for detection of HA-specific antibodies in sera from various experimental species, including mouse, cynomolgus macaque, and tree shrew. Thus, NanoLIPS-based detection of HA offers a simple and high-sensitivity method that detects native conformational epitopes and can be used in various experimental animal models.IMPORTANCE Influenza virus HA-specific antibodies can be detected via the hemagglutination inhibition (HI) assay, the neutralization (NT) assay, and the enzyme-linked immunosorbent assay (ELISA). However, these assays have some drawbacks, including narrow dynamic range and the requirement for large amounts of sera. As an alternative to an ELISA-based method, luciferase immunoprecipitation system (LIPS) was developed. We focused on NanoLuciferase (NLuc), which has a small size, higher intensity, and longer stability. In this study, we developed a technically feasible and highly sensitive method for detecting influenza virus-specific antibodies using a NLuc-tagged recombinant HA protein produced in mammalian cells. HA with a C-terminal NLuc extension (C-NLuc-HA) was glycosylated and formed trimeric complexes when expressed in mammalian cells. Furthermore, C-NLuc-HA was recognized not only by monoclonal antibodies that bind to the globular head domain but also by those that bind to the stalk domain. We also demonstrated that the data obtained by this assay correlate with the protection of an experimental vaccine in animal models.


Assuntos
Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoprecipitação/métodos , Imunoprecipitação/normas , Luciferases/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais , Epitopos/química , Feminino , Testes de Inibição da Hemaglutinação , Imunoprecipitação/instrumentação , Vacinas contra Influenza/imunologia , Luciferases/metabolismo , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/imunologia , Sensibilidade e Especificidade , Tupaiidae
17.
Biosens Bioelectron ; 179: 113074, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596516

RESUMO

On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with "on-site" results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.


Assuntos
Técnicas Biossensoriais/instrumentação , Doenças Transmissíveis/diagnóstico , Internet das Coisas , Testes Imediatos , Animais , Inteligência Artificial , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Infecções por Coronavirus/diagnóstico , Dengue/diagnóstico , Desenho de Equipamento , Infecções por HIV/diagnóstico , Doença pelo Vírus Ebola/diagnóstico , Humanos , Influenza Humana/diagnóstico , Malária/diagnóstico , Infecções por Orthomyxoviridae/diagnóstico , Infecção por Zika virus/diagnóstico
18.
J Vet Diagn Invest ; 33(2): 253-260, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550926

RESUMO

We report whole-genome sequencing of influenza A virus (IAV) with 100% diagnostic sensitivity and results available in <24-48 h using amplicon-based nanopore sequencing technology (MinION) on clinical material from wild waterfowl (n = 19), commercial poultry (n = 4), and swine (n = 3). All 8 gene segments of IAV including those from 14 of the 18 recognized hemagglutinin subtypes and 9 of the 11 neuraminidase subtypes were amplified in their entirety at >500× coverage from each of 16 reference virus isolates evaluated. Subgenomic viral sequences obtained in 3 cases using Sanger sequencing as the reference standard were identical to those obtained when sequenced using the MinION approach. An inter-laboratory comparison demonstrated reproducibility when comparing 2 independent laboratories at ≥99.8% across the entirety of the IAV genomes sequenced.


Assuntos
Doenças das Aves/diagnóstico , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Sequenciamento por Nanoporos/veterinária , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/diagnóstico , Sequenciamento Completo do Genoma/veterinária , Animais , Animais Selvagens , Doenças das Aves/virologia , Galinhas , Patos , Vírus da Influenza A/genética , Influenza Aviária/virologia , Sequenciamento por Nanoporos/métodos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Perus , Sequenciamento Completo do Genoma/métodos
19.
PLoS One ; 16(1): e0244669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471840

RESUMO

The mutual dependence of human and animal health is central to the One Health initiative as an integrated strategy for infectious disease control and management. A crucial element of the One Health includes preparation and response to influenza A virus (IAV) threats at the human-animal interface. The IAVs are characterized by extensive genetic variability, they circulate among different hosts and can establish host-specific lineages. The four main hosts are: avian, swine, human and equine, with occasional transmission to other mammalian species. The host diversity is mirrored in the range of the RT-qPCR assays for IAV detection. Different assays are recommended by the responsible health authorities for generic IAV detection in birds, swine or humans. In order to unify IAV monitoring in different hosts and apply the One Health approach, we developed a single RT-qPCR assay for universal detection of all IAVs of all subtypes, species origin and global distribution. The assay design was centred on a highly conserved region of the IAV matrix protein (MP)-segment identified by a comprehensive analysis of 99,353 sequences. The reaction parameters were effectively optimised with efficiency of 93-97% and LOD95% of approximately ten IAV templates per reaction. The assay showed high repeatability, reproducibility and robustness. The extensive in silico evaluation demonstrated high inclusivity, i.e. perfect sequence match in the primers and probe binding regions, established as 94.6% for swine, 98.2% for avian and 100% for human H3N2, pandemic H1N1, as well as other IAV strains, resulting in an overall predicted detection rate of 99% on the analysed dataset. The theoretical predictions were confirmed and extensively validated by collaboration between six veterinary or human diagnostic laboratories on a total of 1970 specimens, of which 1455 were clinical and included a diverse panel of IAV strains.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Humana/diagnóstico , Infecções por Orthomyxoviridae/diagnóstico , Doenças dos Suínos/diagnóstico , Animais , Aves/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Saúde Única , Infecções por Orthomyxoviridae/virologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Suínos , Doenças dos Suínos/virologia
20.
J Med Virol ; 93(6): 3939-3943, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32648948

RESUMO

To establish a rapid detection method for H7N9 avian influenza virus (AIV), monoclonal antibodies (mAbs) against hemagglutinin (HA) of H7N9 were developed to establish an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA). AC-ELISA achieved high specificity and sensitivity, with a detection limit of 3.9 ng/mL for H7N9 HA protein (A/Zhejiang/DTID-ZJU01/2013), and 2-2 HA unit/100 µL for live H7N9 AIV. The inter- and intra-assay coefficient of variation was less than 10%. Compared with conventional virus isolation detection, the sensitivity and specificity were 94.96% and 88.24%, respectively. AC-ELISA proved to be a rapid and practical technique for the detection of H7N9 AIV.


Assuntos
Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/diagnóstico , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/imunologia , Aves/virologia , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...